Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
J Food Sci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578119

RESUMO

Black lentils contain protein, carbohydrates, dietary fiber, minerals, and vitamins, as well as phytochemicals and various bioactive compounds. Ultraviolet (UV) radiation and ultrasound (US) methods are innovative technologies that can be used to increase the efficiency of the germination process in grains and legumes. To improve the nutritional value and bioactive compounds of the cookies, black lentils germinated by applying UV radiation and US technology were used in the cookie formulation. Before the germination process, UV, US, and their combination (UV+US) were applied, and pretreated and unpretreated germinated black lentil flours were used at a level of 20% in the cookie formulation. The results revealed that pretreatment application increased the total phenolic content and antioxidant activity more than the lentil sample germinated without any treatment. In addition, the pretreatments applied further reduced the amount of phytic acid in black lentils and the lowest phytic acid content was obtained with the UV-US combination. Compared to cookies containing unpretreated germinated black lentil flour, higher L* values and lower a* values were obtained in the cookie samples containing pretreated germinated black lentil flour. Cookies containing all pretreated germinated lentils generally exhibited higher Ca and K content. This study demonstrated that UV radiation and US improved the nutritional value and bioactive components of the germinated black lentil flour and the cookies in which it was used, compared to the black lentils germinated without any treatment. PRACTICAL APPLICATION: Pretreatment of black lentils with UV/US application before germination resulted in a greater increase in total phenolic content and antioxidant activity compared to the control sample. The applied pretreatments caused a further decrease in the amount of phytic acid in black lentil samples. Black lentils germinated with the UV+US combination revealed higher Ca, Fe, K, and Mg content compared to the sample germinated without any treatment.

2.
Food Sci Technol Int ; : 10820132241243240, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556930

RESUMO

This study aimed to develop a protein-fiber-rich extruded product based on yellow lentil, quinoa, and pumpkin flours. The final product quality is affected by formulation and extrusion parameters. Therefore, the effect of the pumpkin-flour ratio (A: 25-75%) and feed moisture content (C: 14-22%) besides barrel screw speed (B: 120-180 rpm) on the physical attributes of extrudates was investigated. Box-Behnken experimental design and stepwise-response surface method were used to analyze the effects of various process variables and ingredients on extrudates. The pumpkin-flour ratio had a significant positive correlation with bulk density (BD), water solubility index (WSI), and oil absorption index. Whereas the correlation between pumpkin-flour ratio with hardness, porosity, expansion ratio (ER), and water absorption index (WAI) was negative (P < 0.05). The feed moisture content positively affected the water activity (aw) and WAI and negatively affected the harness of samples (P < 0.05). The screw speed had a positive effect on ER, porosity, and WSI, whereas it negatively influenced the hardness, BD, and aw. By increasing the pumpkin-flour ratio, air cell size and wall thickness of samples had been decreased. The results showed that 44.2% pumpkin flour, 22% feed moisture, and 172.1 rpm screw speed gave an optimized product. There was no significant difference between predicted and experimental values (except for ER). The optimized snack was a good source of fiber (around 15%), protein (17.3%), and antioxidants (TPC = 15.28 mg GAE.g-1 and antiradical scavenging activity (DPPH) = 33.66%). The caloric value of the optimized snack was 362.6 cal.100g-1. The current formulation can be considered as the base of snack food or plant-based meat alternatives.

3.
Int J Biol Macromol ; 267(Pt 1): 131468, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599432

RESUMO

In this work, the changes in the composition of the flours and in the morphological, structural, thermal, vibrational, rheological, and functional properties of the isolated lentil starch during the germination process were investigated. The fiber, fat, and ash content of the flours decreased and the protein content increased, while the apparent amylose content of the starch granules remained constant. Using scanning electron microscopy (SEM), the starch granules remained intact during germination, and no enzymatic activity of α- and ß-amylases was observed. X-ray diffraction shows that the starch has nanocrystals with hexagonal structure which predominate over the nanocrystals with orthorhombic structure and are classified as C-type starch. The most important result is that these nanocrystals do not play an important role during germination. As the germination time progresses, differential scanning calorimetry (DSC) shows a decrease in the gelatinization temperature (Tp) of the starch, ranging from 70.34 ± 0.25 °C for the native lentil starch to values of 67.16 ± 0.37 °C for the starch on the fourth day of germination (ILS4), this transition being related to the solvation of the nanocrystals. On the other hand, the pasting profiles show no significant changes during germination, indicating that no significant changes in starch content occur during germination. Starch degradation is essential for the production of malt for fermented beverages. This fact makes sprouted lentils not a candidate for the short-term fermentation required in the beverage industry.

4.
Food Sci Nutr ; 12(4): 2855-2873, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628169

RESUMO

Lentil protein hydrolysates (LPH) and lentil protein hydrolysates cross-linked (LPHC) were grafted with gum Arabic (GA) through a wet Maillard reaction at 100°C for 2 h and called MLPH and MLPHC. The samples were assessed for absorption, degree of grafting (DG), surface hydrophobicity, antioxidant activity, molecular weight (MW) profile, chemical alteration, volatile compounds, functional and sensory properties. Results showed that Maillard grafting led to increase in absorption and DG (maximum value: MLPHC), and led to the reduction of the surface hydrophobicity and antioxidant activity (minimum value: MLPHC). MW profiles indicated that MLPH and MLPHC formed new bands at MW >250 kDa. Regarding the Fourier transform infrared spectroscopy (FTIR), Maillard conjugation led to the occurrence of peaks at 1759 and 1765 cm-1, while the intensities of amide I bands at 1637 and 1659 cm-1 and amide II bands at 1498 and 1495 cm-1 were decreased. Hydrolysis, cross-linking, and especially Maillard grafting provided well-balanced content of volatile components. Indeed, the proportions of alcohols, ketones, aldehydes, and acids were changed, thereby, the inherent grassy and planty tastes were diminished while new umami taste was developed. Maillard grafting led to significant improvement of functional properties, while MLPH and MLPHC indicated the highest emulsifying activity at pH 10.0 (73.76 and 70.12 m2/g, respectively) and stability (369.64 and 288.22 min), foaming capacity (88.57% and 142.86%) and stability (60.57% and 72%). Sensory analysis has demonstrated that umami taste was highly developed in MLPH and MLPHC, which can be well considered as meat proteins and flavor enhancers such as monosodium glutamate (MSG).

5.
Front Nutr ; 11: 1344986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585617

RESUMO

The lentil (Lens culinaris Medikus ssp. Culinaris) is a self-pollinating, diploid (2n = 2X = 14) crop with a genome size of 4 Gbp. The present study was conducted to provide a database for the evaluation of lentil antioxidant capacity, nutritional quality, and biochemical attributes. For these purposes, lentil germplasm, including 100 exotic and local genotypes from different agro-climatic zones of Pakistan, was collected. Significant variation (p < 0.05) was found among the genotypes under investigation using the Tukey HSD test. Ascorbate peroxidase was highest in ALTINOPARK (2,465 Units/g s. wt.), catalase in LPP 12110 (5,595 Units/g s. wt.), superoxide dismutase in LPP 12105 (296.75 Units/g s. wt.), and peroxidase in NIAB Masoor 2002 (3,170 Units/g s. wt.). Furthermore, NLM 15016 had a maximum total antioxidant capacity of 15.763 mg/g s. wt. The maximum values of total soluble sugars (83.93 mg/g. s. wt.) and non-reducing sugars (74.79 mg/g. s. wt.) were noticed in NLM 15015. The highest reducing sugars were detected in ILL 8006 (45.68 mg/g. s. wt.) ascorbic acid in LPP 12182 (706 µg/g s. wt.), total phenolic content in NLI 17003 (54,600 µM/g s. wt.), and tannins in NLI 17057 (24,563 µM/g s. wt.). The highest chlorophyll a (236.12 µg/g s. wt.), chlorophyll b (317 µg/g s. wt.), total chlorophyll (552.58 µg/g s. wt.), and lycopene (10.881 µg/g s. wt.) were found in NLH 12097. Maximum total carotenoids were revealed in the local approved variety Markaz 2009 (17.89 µg/g s. wt.). Principal component analysis (PCA), correlation analysis (Pearson's test), and agglomerative hierarchical clustering (AHC) were performed to detect the extent of variation in genotypes. In cluster analysis, all genotypes were categorized into three clusters. Cluster II genotypes showed remarkable divergence with cluster III. According to PCA, the contribution of PC-I regarding tested nutritional parameters toward variability was the highest (39.75%) and indicated positive factor loading for the tested nutritional and biochemical parameters. In conclusion, genotype X 2011S 33-34-32 can be used by the food industry in making pasta, multigrain bread, and snacking foods due to its high protein content for meat alternative seekers. Identified genotypes with high nutritional attributes can be utilized to improve quality parameters in the respective lentil breeding lines.

6.
Arch Microbiol ; 206(4): 200, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564016

RESUMO

Fusarium wilt of lentil caused by Fusarium oxysporum f. sp. lentis (Fol) is a destructive pathogen limiting lentil production in India. In the present study, Secreted in Xylem (SIX) effectors genes were explored in Indian races of Fol and also a diagnostic tool for reliable detection of the disease was developed. Four SIX effectors genes, SIX11, SIX13, SIX6 and SIX2 were identified in 12 isolates of Fol belonging to seven races. SIX11 was present in all the races while SIX 13 was absent in race 6 and SIX6 was present only in race 4. The phylogenetic analysis revealed the conserved nature of the SIX genes within the forma specialis and showed sequence homology with F. oxysporum f. sp. pisi. The presence of three effectors, SIX11, SIX13 and SIX6 in race 4 correlates with high disease incidence in lentil germplasms. The in-silico characterization revealed the presence of signal peptide and localization of the effectors. Further SIX11 effector gene present in all the isolates was used to develop Fol-specific molecular marker for accurate detection. The marker developed could differentiate F. oxysporum f. sp. lycopersici, F. solani, F. oxysporum, Rhizoctonia solani and Sclerotium rolfsii and had a detection limit of 0.01ng µL- 1. The effector-based marker detection helps in the unambiguous detection of the pathogen under field conditions.


Assuntos
Fusarium , Filogenia , Marcadores Genéticos , Fusarium/genética , Xilema
7.
Food Res Int ; 184: 114259, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609239

RESUMO

The potential to produce protein-structured vegan yogurts with legumes was explored to offer an alternative to conventional polysaccharide-based varieties. Glucono-δ-lactone (GDL) was employed as a slow acidifying agent and was investigated for its ability to generate cold-set, yogurt-like gels using soy and lentil milks made using minimal processing steps. Soy (5.3 % protein) and lentil (6.1 % protein) milks were successfully gelled by GDL at concentrations of 0.5 % and 1 % w/w. Soy and lentil milks experienced similar acidification profiles and demonstrated good fits with double-exponential decay models. The physical properties of these legume gels were evaluated and compared to a commercial stirred dairy yogurt. Penetration tests were carried out on intact gels, then repeated after stirring. All intact soy samples demonstrated significantly stronger gel structures compared to the commercial yogurt, and most experienced greater amounts of brittleness. Results showed that the stirring of gels caused a notable decrease in firmness and brittleness in the soy gels, making them more similar to the control. Power-law modelling of viscosity curves demonstrated that all samples experienced non-Newtonian flow behavior (n < 0.29). Susceptibility to syneresis was measured by the degree of liquid loss following centrifugation. The optimization of protein type and GDL concentration to replicate the physical properties of dairy-based yogurts can enhance their consumer acceptance and provide a more customizable and controlled approach alternative to traditional fermentation methods.


Assuntos
Fabaceae , Gluconatos , Lactonas , Lens (Planta) , Animais , Leite , Iogurte , Verduras , Géis
8.
Transl Anim Sci ; 8: txae017, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425543

RESUMO

Non-food grade and excess lentil grain production may be included in swine feeds to provide starch and protein and reduce feed cost. Extrusion processing may increase energy and nutrient digestibility of lentil-based diets containing either supplemental plant or animal protein sources. Therefore, the apparent ileal digestibility (AID) of crude protein (CP) and amino acids (AA), apparent total tract digestibility (ATTD) of gross energy (GE), and digestible energy (DE) value of lentil-based diets were assessed in growing pigs. Two diets were formulated to provide 2.4 Mcal net energy (NE)/kg and 4.35 g standardized ileal digestible lysine/Mcal NE: (1) soybean meal (SBM) diet, containing 50% lentil, 31% wheat, and 12.8% SBM; and (2) fish meal (FM) diet, containing 40% lentil, 45% wheat, and 10% FM. Following mixing, each diet batch was divided into two parts: one part remained as mash, whereas the other part was extruded using a single-screw extruder (400 rpm, 250 kg/h). Eight ileal-cannulated barrows (32.3 ±â€…1.5 kg) were fed the four diets at 2.8 times maintenance DE requirement (110 kcal per kg of body weight0.75) for four 9-d periods in a double 4 × 4 Latin square to achieve 8 observations per diet. Data were analyzed as a 2 × 2 factorial arrangement including protein source, post-mixing processing, and their interaction as fixed effects. The lentil sample contained 32.3% starch, 24.4% CP, 9.3% total dietary fiber, and 1.7 mg/g of trypsin inhibitor activity on as is-basis. Interactions between dietary protein source and post-mixing processing were not observed. Feeding FM diets resulted in greater (P < 0.05) AID of dry matter (DM), GE, and most AA, and ATTD of CP, but lower apparent hindgut fermentation of DM and GE than SBM diets. Extrusion increased (P < 0.05) the ATTD of GE and DE value of diets. The AID of CP and AA was 3.2 and 4.7%-units greater (P < 0.05), respectively, for the extruded than mash diets. In conclusion, feeding FM diets resulted in greater ileal digestibility of DM, GE, and AA than SBM diets. Extrusion increased the AID of CP and most AA, and DE value of lentil-based diets containing either supplemental plant protein or animal-protein, indicating that extrusion can increase the energy and protein value of plant-based diets fed to pigs.

9.
Front Plant Sci ; 15: 1199016, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463566

RESUMO

Lentil is a food legume grown in the Indo-Gangetic plains including lower Gangetic Bengal (LGB). Lentil productivity in this zone is severely impeded because of the prevalence of several biotic cues. Plausible reports regarding the status of disease scenario and the associated risk factors are missing. Therefore, judicious crop management strategies are lacking. An intensive survey of 267 farmers' fields was conducted over 3 years in major lentil-growing districts of LGB to evaluate the disease incidence and prevalence. Additional insights were generated, apprehending isolation and characterisation of associated pathogens through spore morphology and molecular markers as well as elucidating the role of biophysical factors in influencing disease development. Climate change has shifted the disease dimension of lentil and precipitated new disease complexes of great risk, which was reflected through geospatial mapping results in the present study. The prevalence of three major diseases, namely collar rot (Sclerotium rolfsii), lentil blight complex (LBC) incited by both Alternaria and Stemphylium, and lentil rust (Uromyces viciae-fabae), was ascertained through cultural and molecular studies and contextualised through pathogenicity appraisal. This study is the first to investigate the complex mixed infection of Alternaria alternata and Stemphylium botryosum, successfully isolating S. botyrosum in India, and confirming the pathogens through sequencing by using internal transcribed spacer (ITS) primers and Stemphylium-specific Glycerol-3-phosphate dehydrogenase 1 (gpd1) and gpd2 primers. Unlike late planting, early planting promoted collar rot infestation. LBC and rust incidence were magnified in late planting. Soil texture resulted in the spatial distribution of collar rot disease. The surveyed data also highlighted the potential role of resistant cultivars and cropping pattern intervention to ensure associational resistance towards addressing the disease bottleneck in lentil.

10.
Food Chem ; 447: 138882, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452537

RESUMO

The two limiting factors for lentil protein utilization are water solubility and digestibility. In this study, we utilized two non-thermal techniques: (1) protein complexation of lentil and casein proteins using the pH-shifting method and (2) protein conjugation with trehalose to produce trehalose-conjugated lentil-casein protein complexes (T-CPs) with enhanced water solubility and digestibility. The protein structure of the T-CPs was analyzed for secondary protein structure, conformation protein, and tertiary protein structure using Fourier-transform infrared, UV, and fluorescence spectroscopies, respectively. The surface hydrophobicity and surface charge of T-CPs solution at pH 7.0 changed significantly (P < 0.05). Using these two non-thermal techniques, the water solubility and digestibility of T-CPs increased significantly (P < 0.05) by 85 to 89 % and 80 to 85 %, respectively. The results of this study suggested that these non-thermal techniques could enhance the surface and protein structure properties, improving water solubility and digestibility.


Assuntos
Caseínas , Lens (Planta) , Solubilidade , Caseínas/metabolismo , Lens (Planta)/química , Trealose , Água/química
11.
Curr Res Struct Biol ; 7: 100135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516624

RESUMO

Plant-based proteins are often associated with a range of health benefits. Most research primarily investigates pea and soy proteins, while lentil proteins received minimal attention. This study evaluates the effect of protein complexation (using the pH-shifting technique) coupled with trehalose conjugation on lentil and whey proteins. The protein structures after the modification were analysed using spectroscopic methods: Fourier-transform infrared, ultraviolet spectra, and fluorescence spectra. The amide group I, conformation protein, and tertiary structure of the trehalose-conjugated lentil-whey protein complexes (T-LWPs) showed significant changes (P < 0.05). Moreover, the surface properties (surface hydrophobicity and charges) of T-LWPs were significantly modified (P < 0.05), from 457 to 324 a.u and from 36 to -40 mV, respectively. Due to these modifications on the protein structures, the protein digestibility (80-86%) and water solubility (90-94.5%) of T-LWPs increased significantly (P < 0.05) with the increase in the trehalose concentration, from 0 (control) to 5% (w/w), respectively. This study suggested that coupling protein complexation and trehalose conjugation can enhance the overall properties of lentil-based protein complexes. With this enhancement, more opportunities in the utilisation of lentils are to be expected.

12.
Food Sci Technol Int ; : 10820132241238258, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489163

RESUMO

The demand for gluten-free foods has increased due to health-based issues and lifestyle choices. This study aimed to develop a gluten-free cookie with enhanced nutritional value. For this reason, the composite flour from corn flour (CF) and lentil flour (LF) was prepared for cookie formulation. To eliminate the possible negative impact of LF on the sensorial properties of the cookie, lemon peel powder (LPP) was incorporated into the cookie formulation. The effects of the LF level of composite flour and the incorporation level of LPP on the physical, textural, and sensorial properties of the cookie were investigated via response methodology. The optimal levels were found as 16 g LF and 1 g LPP for 100 g composite flour. The physical, textural, and sensorial properties, proximate composition, vitamin C and total phenolic contents, and antioxidant capacity of the developed cookie and control cookies were determined. The developed cookie had a higher nutritional value than the control cookie made from CF in terms of protein, dietary fibre, ash, and vitamin C. Moreover, it presented higher total phenolic content and radical scavenging activity. According to these results, the developed cookie can be proposed for a gluten-free diet.

13.
Curr Res Physiol ; 7: 100124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38501131

RESUMO

This paper describes how lentils (Lens culinaris species) can positively affect health by reducing inflammation, providing antioxidants, and displaying antimicrobial properties. Lentils are rich in proteins, essential amino acids, minerals, and fibers, making them a valuable source of nutrition, particularly in low and middle-income countries. Lentils have many health benefits, including positive effects on diabetes management, support for cardiovascular health, and antioxidative properties. The antioxidative properties of lentils, attributed to their phenolic content, and their ability to inhibit inflammation-related enzymes are also discussed. We discuss the potential of lentils as a dietary tool in promoting immunity, reducing disease burdens, and preventing nutritional deficiencies. Overall, lentils are a highly nutritious food with various health benefits, including anti-inflammatory and antimicrobial effects. The fiber and protein content in lentils make them beneficial for weight management, blood sugar regulation, and supporting overall gut health. Furthermore, the slow rate at which lentils affect blood sugar levels, due to their low glycemic index, can be advantageous for individuals with diabetes.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38330521

RESUMO

This essay investigates the use of an affinity resin named Capto lentil lectin for the purification of bovine and ovine testicular hyaluronidase. Hyaluronidase, an enzyme that degrades hyaluronic acid, is used widely in medical fields like dermatology, orthopedics, and ophthalmology. The research highlights the importance of optimizing the purification process to increase enzyme activity and purity. A new purification method is proposed, which begins with ammonium sulfate precipitation, followed by Blue Sepharose and Capto Lentil Lectin chromatography. This novel approach significantly increases the yield, purity, and activity of the enzyme. This study paves the way for further research into improving the purification process. The study further discusses challenges in identifying hyaluronidase bands using SDS-PAGE and highlights the necessity of using Western blotting for precise results.


Assuntos
Ácido Hialurônico , Hialuronoglucosaminidase , Masculino , Animais , Bovinos , Ovinos , Hialuronoglucosaminidase/análise , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Western Blotting , Testículo/química , Testículo/metabolismo , Cromatografia de Afinidade/métodos
15.
Plant Methods ; 20(1): 30, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369489

RESUMO

The use of high-performant varieties could help to improve the production of food legumes and thus meet the demand of the growing world population. However, long periods needed to develop new varieties through traditional breeding are a major obstacle. Thus, new techniques allowing faster genetic advance are needed. Speed breeding using longer periods of light exposure on plants, appears to be a good solution for accelerating plant life cycles and generation turnover. However, applying extended photoperiod causes plant stress and mortality due to lack of information on the adequate intensity to be used in speed breeding protocol. This study examines the impact of light intensity under speed breeding conditions on the development and growth of lentils and chickpeas, with a keen interest in enhancing genetic gain in these key food legumes. Four distinct levels of light intensity (T1: Green-house: 2000 µmol/m2/s; T2: 148-167 µmol/m2/s; T3: 111-129 µmol/m2/s; T4: 74-93 µmol/m2/s) under a photoperiod of 18 h of light and 6 h of darkness were tested in a growth chamber. Significant variation depending on light intensity was observed for plant height, total biomass, number of secondary stems, pods number, number of seeds per plant, growth rate, green canopy cover, time to flowering, time of pod set, time to maturity, vegetative stage length, reproduction stage length and seed filling stage length. Light intensity significantly influenced flowering/maturity and plant's stress compared to normal conditions in green-house where flowering/maturity were around 67/97 days for lentil and 79/111 days for chickpea. Therefore, lentils in treatment 2 flowered and reached maturity in 30/45 days respectively, with high stress, while chickpeas in the same treatment did not flower. In contrast, treatment 4 showed interesting results, promoting optimal growth with low stress, and flowering/maturity in 27/46 days and 28/54 days, respectively for lentils and chickpeas. These results underline the crucial importance of light management in speed breeding to accelerate vegetative growth and phenology while allowing healthy growth conditions for plants to produce enough seeds for generation turnover.

16.
Plant Biol (Stuttg) ; 26(2): 232-244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230798

RESUMO

Crops arose from wild ancestors and to understand their domestication it is essential to compare the cultivated species with their crop wild relatives. These represent an important source of further crop improvement, in particular in relation to climate change. Although there are about 58,000 Lens accessions held in genebanks, only 1% are wild. We examined the geographic distribution and genetic diversity of the lentil's immediate progenitor L. orientalis. We used Genotyping by Sequencing (GBS) to identify and characterize differentiation among accessions held at germplasm collections. We then determined whether genetically distinct clusters of accessions had been collected from climatically distinct locations. Of the 195 genotyped accessions, 124 were genuine L. orientalis with four identified genetic groups. Although an environmental distance matrix was significantly correlated with geographic distance in a Mantel test, the four identified genetic clusters were not found to occupy significantly different environmental space. Maxent modelling gave a distinct predicted distribution pattern centred in the Fertile Crescent, with intermediate probabilities of occurrence in parts of Turkey, Greece, Cyprus, Morocco, and the south of the Iberian Peninsula with NW Africa. Future projections did not show any dramatic alterations in the distribution according to the climate change scenarios tested. We have found considerable diversity in L. orientalis, some of which track climatic variability. The results of the study showed the genetic diversity of wild lentil and indicate the importance of ongoing collections and in situ conservation for our future capacity to harness the genetic variation of the lentil progenitor.


Assuntos
Variação Genética , Lens (Planta) , Lens (Planta)/genética , Genótipo , Análise de Sequência de DNA , Estruturas Genéticas
17.
Plant Methods ; 20(1): 9, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218836

RESUMO

Lentil is an important pulse that contributes to global food security and the sustainability of farming systems. Hence, it is important to increase the production of this crop, especially in the context of climate changes through plant breeding aiming at the development of high-yielding and climate-smart cultivars. However, conventional plant breeding approaches are time and resources consuming. Thus, speed breeding techniques enabling rapid generation turnover could help to accelerate the development of new varieties. The application of extended photoperiod prolonging the duration of the plant's exposure to light and shortening the duration of the dark phase is among the simplest speed breeding techniques. In this study, genetic variability response under extended photoperiod (22 h of light/2 h of dark at 25 °C) of a lentil collection of 80 landraces from diverse latitudinal origins low (0°-20°), medium (21°-40°) and high (41°-60°), was investigated. Significant genetic variations were observed between accessions, for time to flowering [40 → 120 days], time of pods set [45 → 130 days], time to maturity [64 → 150 days], harvest index [0 → 0.24], green canopy cover [0.39 → 5.62], seedling vigor [2 → 5], vegetative stage length [40 → 120 days], reproduction stage length [3 → 13 days], and seed filing stage length [6 → 25 days]. Overall, the accessions from Low latitudinal origin demonstrated a favorable response to the extended photoperiod application with almost all accessions flowered, while 18% and 57% of accessions originating from medium and high latitudinal areas, respectively, did not successfully reach the flowering stage. These results enhanced our understanding lentil responses to photoperiodism under controlled conditions and are expected to play important roles in speed breeding based on the application of the described protocol for lentil breeding programs in terms of choosing appropriate initial treatments such as vernalization depending on the origin of accession.

18.
PeerJ ; 12: e16370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38188166

RESUMO

The imidazolinone group of herbicides generally work for controlling weeds by limiting the synthesis of the aceto-hydroxy-acid enzyme, which is linked to the biosynthesis of branched-chain amino acids in plant cells. The herbicide imazethapyr is from the class and the active ingredient of this herbicide is the same as other herbicides Contour, Hammer, Overtop, Passport, Pivot, Pursuit, Pursuit Plus, and Resolve. It is commonly used for controlling weeds in soybeans, alfalfa hay, corn, rice, peanuts, etc. Generally, the herbicide imazethapyr is safe and non-toxic for target crops and environmentally friendly when it is used at low concentration levels. Even though crops are extremely susceptible to herbicide treatment at the seedling stage, there have been no observations of its higher dose on lentils (Lens culinaris Medik.) at that stage. The current study reports the consequence of imazethapyr treatment on phenolic acid and flavonoid contents along with the antioxidant activity of the phenolic extract. Imazethapyr treatment significantly increased the activities of several antioxidant enzymes, including phenylalanine ammonia lyase (PAL), phenol oxidase (POD), glutathione reductase (GR), and glutathione-s-transferase (GST), in lentil seedlings at doses of 0 RFD, 0.5 RFD, 1 RFD, 1.25 RFD, 1.5 RFD, and 2 RFD. Application of imazethapyr resulted in the 3.2 to 26.31 and 4.57-27.85% increase in mean phenolic acid and flavonoid content, respectively, over control. However, the consequent fold increase in mean antioxidant activity under 2, 2- diphenylpicrylhdrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assay system was in the range of 1.17-1.85 and 1.47-2.03%. Mean PAL and POD activities increased by 1.63 to 3.66 and 1.71 to 3.35-fold, respectively, in agreement with the rise in phenolic compounds, indicating that these enzyme's activities were modulated in response to herbicide treatment. Following herbicide treatments, the mean thiol content also increased significantly in corroboration with the enhancement in GR activity in a dose-dependent approach. A similar increase in GST activity was also observed with increasing herbicide dose.


Assuntos
Herbicidas , Lens (Planta) , Fenol , Antioxidantes , Plântula , Fenóis , Produtos Agrícolas , Flavonoides , Herbicidas/farmacologia , Glutationa
19.
3 Biotech ; 14(1): 30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178896

RESUMO

Low-cost microbial remediation strategies serve as a viable and potent weapon for curbing the arsenic menace. In the present study, two arsenic-resistant bacteria were isolated from the contaminated lentil rhizosphere in Gangetic plain of eastern India. LAR-21 (Burkholderia cepacia, MW356875) and LAR-25 (Burkholderia cenocepacia, MW356894) could remove 87.6% and 85.9% of arsenite (10 mM) from the liquid culture medium in laboratory condition. They were highly resistant to arsenate and arsenite and also had a high arsenite oxidase activity. LAR-21 showed the highest level of minimum inhibitory concentration value of 390 mM for arsenate and 31 mM for arsenite. The same strain was found to show highest arsenite oxidase activity, i.e., 5.2 nM min-1 mg-1of protein. These two strains further possess potential plant growth-promoting characteristics like indole acetic acid production (5-15 mM IAA mL-1), 1-aminocyclopropane-1-carboxylate deaminase (8-21 nM α-keto butyrate mg protein-1 h-1), nitrogenase activity (3-8.99 nM ethylene mg cell protein-1 h-1), siderophore production (17-22.1 µM deferoxamine mesylate mL-1), phosphate solubilization (261-453 µg mL-1) under arsenic stress condition. The plant growth promotion of the strains was further validated by pot study of lentil by assessing their agronomic and growth-related traits, and potential to recover from arsenic stress (17.2-21.2% arsenic reduction in root and shoot, 16-19.2% in leaf and pod, and 15-23% reduction in seeds). The LAR-21 strain, thus, emerged as the most suited candidate for bioremediation and plant (lentil) growth promotion in arsenic polluted environment.

20.
Foods ; 13(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254582

RESUMO

In response to global challenges such as climate change and food insecurity, plant proteins have gained interest. Among these, lentils have emerged as a promising source of proteins due to their good nutritional profile and sustainability considerations. However, their widespread use in food products has been impeded by limited solubility. This study aimed to investigate the potential of high-shear mixing, a resource-efficient technique, to enhance lentil protein solubility and its functional properties. Red lentil protein isolate powders were rehydrated and subjected to a semi-continuous in-line high-shear treatment at 10,200 rpm for a timespan ranging from 0 to 15 min. The results highlighted a significant (p < 0.05) increase in solubility from 46.87 to 68.42% after 15 min of shearing and a reduction in particle size as a result of the intense shearing and disruption provided by the rotor and forced passage through the perforations of the stator. The volume-weighted mean diameter decreased from 5.13 to 1.72 µm after 15 min of shearing, also highlighted by the confocal micrographs which confirmed the breakdown of larger particles into smaller and more uniform particles. Rheological analysis indicated consistent Newtonian behaviour across all dispersions, with apparent viscosities ranging from 1.69 to 1.78 mPa.s. Surface hydrophobicity increased significantly (p < 0.05), from 830 to 1245, indicating exposure of otherwise buried hydrophobic groups. Furthermore, colloidal stability of the dispersion was improved, with separation rates decreasing from 71.23 to 24.16%·h-1. The significant enhancements in solubility, particle size reduction, and colloidal stability, highlight the potential of in-line high-shear mixing in improving the functional properties of lentil protein isolates for formulating sustainable food products with enhanced techno-functional properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...